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Abstract: In this paper‚ we will display Adomian decomposition method (ADM) for solving a simple harmonic 

oscillator equation∙ It is shown that the Adomian decomposition method (ADM) efficiency‚ simple‚ easy to use in 

solving physical equation.  The proposed method can be applied to linear problem∙  

Some examples were presented to show the ability of the method for linear ordinary differential physical equations∙ 
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1.   INTRODUCTION 

The harmonic oscillator is one of the most important model system in equation mechaincs. An harmonic oscillator is a 

particale subject to a restoring force that is proportional.  to displacement of the particale [4]∙ In classical physics this means, 

F =  ma =  m 
𝑑𝑦2

𝑑𝑡2
=  −K x                           (1) ∙ 

The costant k is known the force constant∙ The study of quantum harmonic motion be beginning with specification of  the 

schrodinger equation∙  We can write the schrodinger equation for a simple harmonic oscillator [5‚6‚7]∙       

 (
−h2 

2m

d2

dx2
+

1

2
kx2)φ(x) = Eφ(x)        (2)ꞏ 

Where x = 0‚ the equation becomes as‚  
d2φ(x)

dx2
+

2mE

h2
φ(x) = 0               (3)ꞏ 

Hence‚ the Schrodinger equation becomes as 

d2φ(x)

dx2
+ β2φ(x) = 0                (4)ꞏ        

       Where β = √
2mE

h
  

In this paper we will using Adomian decomposition method to solving a simple harmonic oscillator and schordinger for 

some simple harmonic oscillator equations. 
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2.   ANALYSIS OF THE METHOD 

Under the transformation ω = √
k

m
   the equation (1) is transformer to 

𝑑2𝑦

𝑑𝑡2
= −ω2y             (5)ꞏ 

Where k force constant and m is mass the equation (4) becomes 

𝑑2𝑦

𝑑𝑡2
+ 𝜔2𝑦 = 0                                                         (6) ∙            

The equation (6) is called a simple harmonic oscillator.   

We propose the new differential operator [1‚2‚9‚10]‚  as below 

L (∙) = eiωt
d

dt
 e−2iωt

d

dt
eiωt(∙)   (7)‚ 

so‚ the problem (6) can be written as 

𝐿(∙) = 0                                             (8) ∙ 

The inverse operator L-1 is therefor considered a tow-fold integeral operator‚ as below     

L−1(∙) = e−iωt ∫ e2iωt ∫ e−iωt
t

0

t

0

(y″ + ω2y)      (9) ∙ 

Applying L−1 of (9) to the tow terms y″ + ω2y of Eq ∙ ( 6) we find 

 

L−1(y″ + ω2y) 

= e−iωt ∫ e2iωt ∫ e−iωt(y″ + ω2y)dtdt
t

0

t

0

 

= e−iωt ∫ e2iωt(e−iωty′ + iωe−iωt − y′(0) − iωy(0)
t

0

 

= y − e−iωty(0) −
y′(0)

2iω
eiωt +

y′(0)

2iω
e−iωt −

y(0)

2
eiωt +

y(0)

2
e−iωt‚   

Operating with L-1 on (6)‚ it follows 

y(t) = e−iωty(0) +
y′(0)

2iω
eiωt −

y′(0)

2iω
e−iωt +

y(0)

2
eiωt −

y(0)

2
e−iωt                  (10) ∙   

 

The Adomian decomposition method introduse the solution y (t)‚ 

so‚ the exact solution is easily obtioned by this method∙  

3.  APPLICATION OF A SIMPLE HARMONIC OSCILLATOR (SHO) 

3-1∙ Simple pendulum 

Case1: if θ smaller then sin θ=θ. 

Consider the equation of motion of a pendulum with length (L) and angle θ 

from the vertical to the pendulum∙  We can be shown that θ‚ as a function  of time satisfied the nonlinear differential 

equations [8]∙ 
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d2θ

dt2
+

g

L
sin θ = 0       (11) ∙     

Where g is the acceration to gravity. For small values of θ ꞏ  

We can use linear approximation sinθ = θ and then the equation becomes linear. 

The Eq∙ (11) becomes 

d2θ

dt2
+

g

L
θ = 0       (12) ∙ We put γ = √

g

L 
‚ this implies 

θ″ + γ2θ = 0             (13) ∙ 

With intial value θ(0) = 1‚ θ′(0) = 0‚ 

we put ω = γ‚substitution of γ = ω in Eq ∙ (6) yield the operator 

L(∙) = eiγt
d

dt
 e−2iγt

d

dt
eiγt(∙)                    (14)‚ 

so            

                     L−1(∙)=e−iγt
∫ e2iγt

t

0

∫ e−iγt(∙)dtdt           (15)
t

0

∙  

In an operator from‚ Eq∙ (13) becomes 

                                                               Lθ = 0  (16) ∙ 

Applying L-1 on both sides of (16) we find 

   L−1Lθ = 0‚ 

and implies‚ 

θ(t) = e−iγtθ(0) +
θ′(0)

2iγ
eiγt −

θ′(0)

2iγ
e−iγt +

θ(0)

2
eiγt −

θ(0)

2
e−iγt‚ 

=
1

2
eiγt +

1

2
e−iγt = cos γt‚ 

so‚ the exact solution is easily obtained by this method∙ 

Example (3-2) 

                       Case2: if θ is larger the sin (π+θ) = -θ‚ 

 the Eq∙ (11) becomes‚ 

 

d2θ

dt2
+

g

L
sin(π + θ) = 0       (17) ∙     

This equation becomes‚ 

θ″ − α2θ = 0             (18) ∙ 

Where α = √
g

L
 and intial value θ(0) = 1‚ θ′(0) = α ∙ 

We propose the new differential operator‚ 

as‚ below‚ 

L(∙) = eαt
d

dt
e−2αt

d

dt
eαt(∙)                          (19)‚ 
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so‚ the problem‚ 

L(θ) = 0      (20) ∙ 

The inverse operator L-1   is therfor‚ 

considerd a tow-fold integral oprator‚ 

as below‚ 

L−1(∙) = e−αt ∫ e2αt ∫ e−αt(θ″ − α2θ)(∙)dtdt                                               (21)  ∙                             
t

0

t

0

 

                 

           Applying L−1 of Eq ∙ (21)to the two terms θ″ − α2θ of Eq ∙ (18)     

We find 

L−1(θ″ − α2θ) 

=e−αt ∫ e2αtt

0
∫ e−αtt

0
(θ″ − α2θ)(∙)dtdt. 

= e−αt ∫ e2αt
t

0

(e−αtθ′ + αe−αtθ − θ′(0) − αθ(0)dt. 

 

= θ(t) − e−αtθ(0) −
1

2α
eαtθ′(0)+

1

2α
e−αtθ′(0)-

1

2
eαtθ(0) +

1

2
e−αtθ(0)   ∙ 

Hence 

θ(t) = e−iαtθ(0) +
1

2α
eαtθ′(0) −

1

2α
e−αtθ′(0)+ 

1

2
eαtθ(0) −

1

2
e−αtθ(0). 

θ(t) = cosh αt + sinh αt                                                                                               (22) ∙ 

Example (3-3)∶ 

We consider the Schrodinger equation for a simple harmonic oscillator (SHO) The Eq∙ (4)  becomes [3]∙ 

 

φ″(x) + β2φ(x) = 0               (23) ∙ 

 

With intial value φ(0) = 1‚ φ′(0) = β‚ 

we put ω = β‚substitution of β = ω in Eq ∙ (5) yield the operator 

L(∙) = eiβx
d

dx
 e−2iβx

d

dx
eiβx(∙)                         (24)‚ 

                     L−1 (∙) = 𝑒−iβx ∫ e2iβx
x

0

∫ e−iβx(∙)dxdx                                   (25)
x

0

∙ 

In an operator from‚ Eq ∙(23)becomes 

                                                               Lφ = 0                                               (26) ∙ 

Applying L−1  on both sides of (23)‚ we find L−1Lφ = 0‚ 

and implies‚ 

φ(x) = e−iβxφ(0) +
φ′(0)

2iβ
eiβx −

φ′(0)

2iβ
e−iβx +

φ(0)

2
eiβx −

φ(0)

2
e−iβx, 

so 

φ(x) = cos βx + sin βx                      (27) ∙ 
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4.   CONCLUSION 

Adomian decomposition method has been known to be a powerful device for solving many functional equations such as 

algebra equations, ordinary and partial differential equations, integral equations, physical equations and so on. Her we used 

this method for solving second ordinary differential equations in physical, which called a simple harmonic oscillator. It is 

demon-stated that this method has the ability of solving equations of both linear and non-linear. Her we used method for 

solving linear equations, such as a simple pendulum equation, Schrodinger equation. For these equations we derived the 

exact solution. 
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